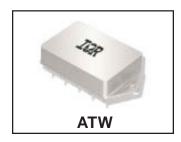
International TOR Rectifier

ADVANCED ANALOG HYBRID-HIGH RELIABILITY DC/DC CONVERTERS

Description

The ATW28XXD Series of DC/DC converters feature high power density and an extended temperature range for use in military and industrial applications. Designed to MIL-STD-704 input requirements, these devices operate with a nominal 28 VDC inputs with ±12V and ±15V dual outputs to satisfy a wide range of requirements. The circuit design incorporates a pulse width modulated push-pull topology operating in the feed-forward mode at a nominal switching frequency of 270KHz. Input to output isolation is achieved through the use of transformers in the forward and feedback circuits.


The advanced feedback design provides fast loop response for superior line and load transient characteristics and offers greater reliability and radiation tolerance than devices incorporating optical elements in the feedback circuits.

Three standard temperature grades are offered. Refer to Part Number section for more severe environments.

Manufactured in a facility fully qualified to MIL-PRF-38534, these converters are available in four screening grades to satisfy a wide range of requirements. The CH grade is fully compliant to the requirements of MIL-PRF-38534 for class H. The HB grade is processed and screened to the class H requirement, but may not necessarily meet all of the other MIL-PRF-38534 requirements, e.g., element evaluation and Periodic Inspection (PI) not required. Both grades are tested to meet the complete group "A" test specification over the full military temperature range without output power deration. Two grades with a more limited screening are also available for use in less demanding applications. Variations in electrical, mechanical and screening can be accommodated. Contact Advanced Analog for special requirements.

ATW28XXD SERIES

28V Input, Dual Output

Features

- 18 to 40 VDC Input Range (28 VDC Nominal)
- ±12V and ±15V Outputs Available
- Indefinite Short Circuit and Overload Protection
- 22.8 W/in³ Power Density
- 30 W Output Power
- Fast Loop Response for Superior Transient Characteristics
- Operating Temperature Range from -55°C to +125°C Available
- Popular Industry Standard Pin-Out
- Resistance Seam Welded Case for Superior Long Term Hermeticity
- Efficiencies up to 85%
- Shutdown from External Signal
- Full Military Screening
- 200,000 hour MTBF at 85°C
- MIL-PRF-38534 Compliant Versions Available

International IOR Rectifier

Specifications ATW2812D

-0.5V to 50V

ABSOLUTE MAXIMUM RATINGS Input Voltage Soldering Temperature Case Temperature 300°C for 10 seconds Operating -55°C to +125°C Storage -65°C to +135°C

Table I. Electrical Performance Characteristics

Test	Symbol	Conditions -55°C ≤Tc ≤+125°C Vin = 28 Vdc ±5%, C _L = 0	Group A Subgroups	Device Types			Unit
		Unless otherwise specified			Min	Max	
Output voltage	put voltage V_{out} $I_{out} = 0$ 1		1	All	±11.88	±12.12	V
		2,3		±11.76	±12.24		
Output current 1,2	I _{OUT}	V_{IN} = 18, 28, and 40 V dc, each output	1,2,3	All	250	2250	mA
Output ripple voltage ³	V_{RIP}	$V_{IN} = 18, 28, \text{ and } 40 \text{ V dc},$ B.W. = 20Hz to 2MHz	1,2,3	All		85	mVp-p
Line regulation ⁴	VR	$V_{IN} = 18, 28, \text{ and } 40 \text{ V dc},$ lout = 0,1250, and 2500mA	1	All		30	mV
			2,3			60	
Load regulation 4	VR _{LOAD}	$V_{IN} = 18, 28, \text{ and } 40 \text{ V dc},$ $I_{OUT} = 0, 1250, \text{ and } 2500\text{mA}$	1,2,3	All		120	mV
Cross regulation ⁵	VR _{cross}	10% to 90% load change	1,2,3	All		3.5	%
Input current	I _{IN}	I _{OUT} = 0, inhibit (pin 8) tied to input return (pin 10) I _{OUT} = 0,inhibit (pin 8)= open	1,2,3	All		18 50	mA
Input ripple current 3, 4	I _{RIP}	I _{OUT} = 2500mA		50	mAp-p		
Efficiency ⁴	E _{FF}	$I_{OUT} = 2500 \text{mA}$ $T_{C} = +25 ^{\circ}\text{C}$	1	All	80		%
Isolation	ISO	Input to output or any pin to case (except pin 7) at 500 V dc Tc = +25°C	1	All	100		ΜΩ
Capacitive load 6,7	C _L	No effect on dc performance, Tc = +25°C, total for both outputs	4	All		200	μF
Power dissipation load fault	P _D	Overload, T _c = +25°C ⁸				12	W
		Short circuit, T _c = +25°C				9	
Switching frequency 4	Fs	I _{OUT} = 2500mA	4,5,6	01	250	300	KHz
				02	250	270	
0.1.1.	\/O	4050 4 // 0500 1	4.5.0	03	275	300	
Output response to step transient load changes 4,9	VO _{TLOAD}	1250mA to/from 2500mA	4,5,6	All	-400	+400	mV pk
		0mA to/from 2500mA	4,5,6	All	-800	+800	
Recovery time step transient load changes 4, 9, 10	TT _{LOAD}	1250mA to/from 2500mA	4,5,6	All		70	μs
		0mA to/from 1250mA	4,5,6	All	1	500	
		1250mA to/from 0mA	4,5,6	All	1	5	ms

For Notes to Specifications, refer to page 3

ATW28XXD Series

International IOR Rectifier

Table I. Electrical Performance Characteristics - continued

ATW2812D

Test	Symbol	Conditions -55°C \leq Tc \leq +125°C Vin = 28 Vdc \pm 5%, C _L = 0 unless otherwise specified	Group A Subgroups	oups Types		nits	Unit
					Min	Max	
Output response transient step line changes 4,7,11	VO _{TLINE}	Input step from/to 18 to 40 Vdc, I _{OUT} = 2500mA	4,5,6	All	-800	+800	mV pk
Recovery time transient step line change 4, 7, 10, 11	TT _{LINE}	Input step from/to 18 to 40 Vdc, I _{OUT} = 2500mA	4,5,6	All		4000	μs
Turn on overshoot 4	VTon _{os}	I _{out} = 0 and 2500mA	4,5,6	All		750	mV pk
Turn on delay 4, 12	Ton _□	I _{оит} = 0 and 2500mA	4,5,6	All		14	ms
Load fault recovery 7	Tr _{lf}		4,5,6	All		14	ms
Weight		Flange				75	grams

Notes to Specifications

- Parameter guaranteed by line, load and cross regulation tests.
- Up to 90% of full power is available from either output provided the total output does not exceed 30W.
- Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- Load current split equally between +V_{out} and -V_{out}.

 Three-watt load on output under test, 3 watt to 27 watt load change on other output.
- Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- Parameter shall be tested as part of design characterization and after design or process changes.

 Thereafter, parameters shall be guaranteed to the limits specified in Table I.

 An overload is that condition with a load in excess of the rated load but less than that necessary to
- trigger the short circuit protection and is the condition of maximum power dissipation.
- Load step transition time between 2 and 10 microseconds.
- 10 Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1 percent of V_{out} at 50 percent load.

 11 Input step transition time between 2 and 10 microseconds.
- 12 Turn-on delay time measurement is for either a step application of power at the input or the removal of ground signal from the inhibit pin (pin 8) while power is applied to the input.

International IOR Rectifier

Specifications ATW2815D

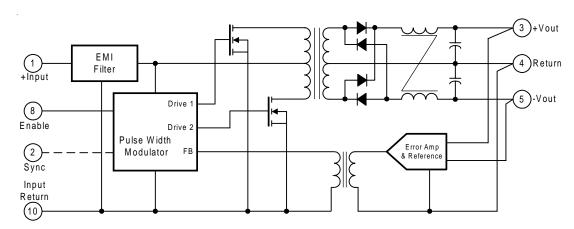
ABSOLUTE MAXIMUM RATINGS Input Voltage Soldering Temperature Case Temperature -0.5V to 50V 300°C for 10 seconds Operating -55°C to +125°C Storage -65°C to +135°C

Table II. Electrical Performance Characteristics

	Test	Symbol	Conditions $-55^{\circ}C \le Tc \le +125^{\circ}C$ Vin = 28 Vdc ±5%, C _L = 0	Group A Subgroups	Device Lin Types		nits	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Offiess otherwise specified			Min	Max	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output voltage	Vour	V _{IN} = 18, 28, and 40 Vdc	1	All			V _{DC}
		001		2,3	All	±14.70	±15.30	V _{DC}
	Output current 11, 13	I _{out}	V _{IN} = 18, 28, and 40 V dc	1,2,3	All	0.200	2000	mA _{DC}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output ripple voltage 8	V _{RIP}		1,2,3	All		85	mVp-p
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output Power 4, 11	P _{out}	V _{IN} = 18, 28, 40 Vdc	1,2,3	All	30		W
Load regulation $^{9, 10}$ VR _{LOAD} V _N = 18, 28, and 40 V dc, 1,2,3 All 150 mV	Line regulation 9, 10	$VR_{\text{\tiny LINE}}$		1	All		35	mV
Load regulation $^{9, 10}$ VR_{LOAD} $V_{N} = 18, 28, \text{ and } 40 \text{ V dc}, $								
		VR_{LOAD}	$I_{OUT} = 0$, 1000, and 2000mA	, ,				
	Input current	l _{in}		, ,				mADC
								mADC
				1,2,3			60	mAp-p
Efficiency E_{FF} $I_{OUT} = 2500 \text{mA } T_{C} = 25^{\circ} \text{C}$ 1 All 80 %	Efficiency							%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ISO	to case (except pin 8) at	1	All	100		MΩ
Capacitive load 6,12 C _L No effect on dc performance, 4 All 500 μF Tc = 25°C	Capacitive load 6, 12	C _L	Tc = 25°C	4	All		500	μF
Power dissipation P_D Overload, $T_C = +25^{\circ}C^{3}$ 1 All 9 W load fault		P _D	Overload, T _c = +25°C ³	1	All		9	W
Short circuit, $T_c = +25^{\circ}C$ 1 All 9 W			Short circuit, T _c = +25°C	1	All		9	W
Switching frequency F_s $I_{out} = 2000 \text{mA}$ 1,2,3 01 237 263 KHz	Switching frequency	F _s	I _{out} = 2000mA	1,2,3	01	237	263	KHz
1,2,3 02 230 245 KHz				1,2,3	02	230	245	KHz
1,2,3 03 250 265 KHz				1,2,3	03	250	265	KHz
Output response to step transient load changes 7, 9, 10 VO _{TLOAD} 50% load to/from 100% load 4,5,6 All -300 +300 mV pk	transient	VO_{TLOAD}	50% load to/from 100% load	4,5,6	All	-300	+300	mV pk
	iodd oridiigoo		No load to 100% load	456	ΔΙΙ	-800	-800	mV pk
				, ,				mV pk
Recovery time step TT _{LOAD} 50% load to/from 100% load 4,5,6 All 25 µs transient load changes ^{1,7}		TT _{LOAD}				1000		-
No load to 50% load 4.5.6 All 500 µs	goo		No load to 50% load	4.5.6	All		500	US
50% load to no load 4.5.6 All 7 ms								

Table II. Electrical Performance Characteristics - continued

ATW2815D


Test	Symbol	Conditions $-55^{\circ}C \leq Tc \leq +125^{\circ}C$ Vin = 28 Vdc $\pm 5\%$, $C_{\rm L} = 0$ unless otherwise specified	Group A Subgroups	Device Types	Limits		Unit
					Min	Max	
Output response transient step line changes 5, 12	VO _{TLINE}	Input step from/to 18 to 40VDC	4,5,6	All		+180	mV pk
		Input step from 40 to18 VDC	4,5,6	All		-600	mV pk
Recovery time transient step line changes 1.5,12	TT _{LINE}	Input step from/to 18 to 40 VDC	4,5,6	All		400	μs
		Input step from 40 to 18 VDC	4,5,6	All		400	μS
Turn on overshoot	VTon _{os}	I _{out} = 0 and 2000mA	4,5,6	All		750	mV pk
Turn on delay ²	Ton _D	I _{оит} = 0 and 2000mA	4,5,6	All		12	ms
Load fault recovery 12	Tr _{lf}	V _{IN} = 18 to 40 VDC	4,5,6	All		12	ms
Weight		Flange				75	grams

Notes to Specifications

- Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within $\pm 1\%$ of V_{OUT} at 50% load. Turn-on delay time measurement is for either a step application of power at the input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.

 An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit
- protection and is the condition of maximum power dissipation.
- Above +125°C case, derate output power linearly to 0 at +135°C case.
- Input step transition time between 2 and 10 microseconds.
- 6 Capacitive load may be any value from 0 to the maximum limit without compromising DC performance. A capacitive load in excess of the maximum limit will not disturb loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn on.
- Load step transition time between 2 and 10 microseconds.
- Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- 9 Load current split equally between +V_{ουτ} and -V_{ουτ}.
 10 When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation.
- 11 Parameter guaranteed by line and load regulation tests.
- 12 Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified in Table II.
- 13 Up to 90% of full power is available from either output provided the total output does not exceed 30 watts.

ATW28XXD Block Diagram

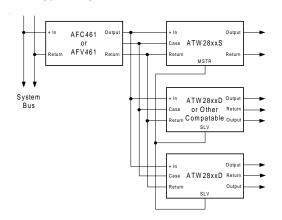
Application Information

Inhibit Function

Connecting the inhibit input (Pin 8) to input common (Pin 10) will cause the converter to shut down. It is recommended that the inhibit pin be driven by an open collector device capable of sinking at least $400\mu A$ of current. The open circuit voltage of the inhibit input is 11.5 ± 1 VDC.

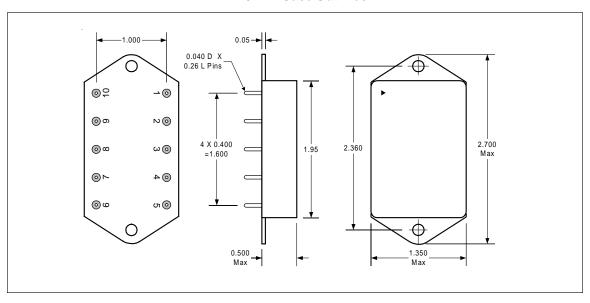
EMI Filter

An optional external EMI filter (AFC461) is available that will reduce the input ripple current to levels below the limits imposed by MIL-STD-461B CEO3.


Device Synchronization

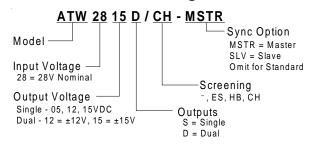
Whenever multiple DC/DC converters are utilized in a single system, significant low frequency noise may be generated due to the slight differences in the switching frequencies of the converters (beat frequency noise). Because of the low frequency nature of this noise (typically less than 10KHz), it is difficult to filter out and may interfere with proper operation of sensitive systems (communications, radar or telemetry). Advanced Analog offers an option, which allows synchronization of multiple AHE/ATW type converters, thus eliminating this type of noise.

To take advantage of this capability, the system designer must assign one of the converters as the master. Then, by definition, the remaining converters become slaves and will operate at the masters' switching frequency. The user should be aware that the synchronization system is fail-safe; that is, the slaves will continue operating should the master frequency be interrupted for any reason. The layout must be such that the synchronization output (pin 2) of the master device is connected to the synchronization input (pin 2) of each slave device. It is advisable to keep this run short to minimize the possibility of radiating the 250KHz switching frequency.


The appropriate parts must be ordered to utilize this feature. After selecting the converters required for the system, a 'MSTR' suffix is added for the master converter part number and a 'SLV' suffix is added for slave part number. See Part Number section.

Typical Synchronization Connection

ATW28XXD Series


ATW28XXD Case Outlines

Pin Designation

Pin No.	Designation	
1	Positive Input	
2	N/C Standard or Sync. (Optional)	
3	Positive Output	
4	Output Return	
5	Negative Output	
6	N/C	
7	Case Ground	
8	Enable	
9	N/C	
10	Input Return	

Part Numbering

Available Screening Levels and Process Variations for ATW28XXD Series

Requirement	MIL-STD-883 Method	No Suffix	ES Suffix	HB Suffix	CH Suffix
Temperature Range		-55°C to +85°C	-55°C to +125°C	-55°C to +125°C	-55°C to +125°C
Element Evaluation					MIL-PRF-38534
Internal Visual	2017	*	Yes	Yes	Yes
Temperature Cycle	1010, Cond C		Cond A	Yes	Yes
Constant Acceleration	2001, Cond A		500g	5,000g	5,000g
Burn-in	1015	48hrs @ 85°C	48hrs @ 105°C	160hrs @ 125°C	160hrs @ 125°C
Final Electrical (Group A)	MIL-PRF-38534 & Specification	25°C	25°C	-55, +25, +125°C	-55, +25, +125°C
Seal, Fine & Gross	1014		Yes	Yes	Yes
External Visual	2009	*	Yes	Yes	Yes

^{*} Per Commercial Standards

Available Standard Military Drawing (SMD) Cross Reference

Standardized Military Drawing Pin	Vendor CAGE Code	Vendor Similar Pin
5962-9210901HZX	52467	ATW2812D/CH
5962-9210902HZX	52467	ATW2812D/CH-SLV
5962-9210903HZX	52467	ATW2812D/CH-MSTR
5962-9161301HZX	52467	ATW2815D/CH
5962-9161302HZX	52467	ATW2815D/CH-SLV
5962-9161303HZX	52467	ATW2815D/CH-MSTR

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 10/02